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1. Introduction 

External armor protects vehicles from the high temperatures, blast overpressure, fragmentation, 
and debris generated by the explosion of land mines.  However, a combination of air blast, 
fragments, and soil ejecta also delivers an impulsive load to the underbody of a vehicle.  This 
impulse is imparted in a few milliseconds (ms), resulting in high initial acceleration.  Mechanical 
isolation between the occupants and the vehicle is required to reduce the acceleration to 
acceptable levels for survivability.  A well-designed mine blast protected vehicle should provide 
survivable mechanical isolation for the occupants up to the threat levels for which the armor was 
designed.  This can be achieved by allowing for adequate seat stroke, or displacement of the seat 
relative to the vehicle, and by incorporating appropriate shock isolation between them. 

This report reviews some background information regarding vehicle blast response, presents 
minimum seat stroke requirements, provides an overview of the Dynamic Response Index (DRI) 
model, and explores implications of this model for spinal injuries.  Guidelines for shock isolation 
parameters to achieve minimum DRI and minimum acceleration are developed for a damped 
harmonic oscillator. 

2. Blast Loading and Vehicle Response 

Vehicle rigid body motion (e.g., motion of the center of gravity), is determined by the blast 
loading and the mass of the vehicle.  In turn, blast loading is dependent upon the burial depth of 
the charge and soil conditions.  For a surface laid explosive, the blast wave propagates as a 
hemispherical wave outward from the detonation point.  Buried explosives produce more 
concentrated loading inside a debris cone.  Shallow buried explosives concentrate most of their 
blast effects on the vehicle, where the standoff from the explosive charge to the vehicle 
underbody is much less than the length or width dimensions.  Deep buried explosives apply a 
smaller portion of their impulse to the vehicle because the debris cone is larger than the vehicle 
dimensions.  Shallow buried explosives are therefore the most efficient at coupling momentum, 
and represent the worst case blast loading for shock isolation. 

Larger vehicles are less vulnerable due to their increased mass.  Their larger underbody area 
contributes only weakly to the impulse delivered, because even vehicles of relatively modest size 
can intercept the majority of the debris cone.  Increased ground clearance is beneficial due to the 
drop off in blast loading with distance.  Figure 1 is a plot of rigid body motion attained by 
vehicles of various mass against the impulse levels achievable with shallow buried explosives.  
Local velocities may be higher due to off-center blast loading or dynamic deflection of the hull. 
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Figure 1.  Rigid body velocity attained by vehicles subjected to impulsive loading. 

As a conservative approximation, the vehicle velocity shown in figure 1 may be assumed to be 
acquired instantaneously.  To protect the occupants against unacceptably high acceleration loads, 
the seat design must allow for relative motion with the vehicle.  The shock absorbing system 
must cancel this relative motion between the occupant and the vehicle while applying survivable 
acceleration loads.  A greater distance between the seat and vehicle hard points will allow for a 
more gradual acceleration profile; conversely, tighter space constraints will require higher 
acceleration to match the vehicle velocity within the available distance.  The distance required 
for motion between the vehicle and the seat with a constant acceleration is given by 

a
vd
2

2

= ,      (1) 

where d is distance, a is acceleration, and v is the vehicle velocity.  Using the relationship 
between velocity and impulse shown in figure 1, the required seat stroke for a constant 
acceleration can be plotted as a function of vehicle mass and applied impulse.  An example of 
this is shown in figure 2.  Notice that the required seat stroke scales with the square of impulse 
and inversely with the square of mass, becoming a particularly important design consideration 
for lightweight vehicles. 
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Figure 2.  Seat stroke required to maintain 18 G acceleration. 

3. Occupant Response 

Blast overpressure and fragmentation hazards are mitigated by armor, and preservation of the 
occupied space is maintained by the strength of the vehicle structure.  However, rigid body 
acceleration remains a potential injury mechanism for occupants regardless of the survivability 
of the vehicle itself or the protection it provides from external hazards (1,2).  The North Atlantic 
Treaty Organization (NATO) coordinate system used for body coordinates is +x in the forward 
direction, +y laterally to the right, and +z in the upward direction.  This coordinate system 
convention does not obey the right-hand rule.  Under +z acceleration, the primary injury 
mechanism for serious injuries is due to compressive loading of the spinal column (3).  The 
response of the human body to various acceleration loads has been investigated in detail in a 
number of prior works, including a comprehensive review of available data in 1959 by Eiband 
(4).  Eiband recommended a +z acceleration limit of 23 G applied for 5.5 ms based on catapult 
tests.  This time limit was later increased to 25 ms based on helicopter crashworthy seating 
design work (5).  Acceleration limits were further relaxed in reference (2), with a limit of 25 G 
applied for 100 ms.  Notice that these acceleration limits apply to well-restrained young males.  
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4. DRI Model 

The DRI model was developed to characterize the response of the spinal column to short 
duration accelerations.  It was originally developed to aid in aircraft ejection seat design, and has 
since been extended for use in crashworthiness and mine blast studies.  Its parameters have been 
validated through aircraft ejection seat studies, catapult tests, and drop tests (3,6).  At the time of 
this writing, however, its utility for predicting injury sustained from blast loading has not been 
validated.  The model treats the spine as a lumped mass spring system, with the probability of 
injury related to the compression of the spine, δ.  Therefore, the DRI model takes the form of the 
forced harmonic oscillator equation 

2

2
2

2

2

2
t
z

dt
d

dt
d

nn ∂
∂

=++ δωδζωδ ,    (2) 

where z is the input displacement in the vertical direction.  The natural frequency, ωn, and the 
damping ratio, ζ, are empirically determined constants with values of 52.9 rad/s and 0.224, 
respectively (7).  The non-dimensional DRI is defined as 

g
DRI n max

2δω
≡ ,     (3) 

where g is the acceleration of gravity.  Ejection seat and rocket catapult experiments with 
cadavers and operational ejection seat data have shown the probability of injury to scale 
exponentially with increasing DRI, with a recommended limit of 18 for the prevention of spinal 
injuries.  It should be emphasized that this model only considers vertical accelerations, and that 
injury rates rise when the acceleration vector is more than 5° from vertical (7). 

5. Optimal Solutions 

Given an initial velocity change to the vehicle, the minimum acceleration is achieved by 
applying a constant square pulse acceleration profile over the full available seat stroke.  Energy 
absorbing systems consisting of crushable or permanently deformable components can get close 
to square pulse acceleration and minimum stroke, but the same acceleration is applied to both 
large and small velocity changes.  The crushable element is also a single use component, and 
may fail to provide adequate isolation when the vehicle falls back to the ground.  This second 
impact is known as the slam-down phase, during which it is equally important to provide 
adequate occupant isolation (1).  A system incorporating a restoring force to return the seat to its 
initial position may be desirable; enabling the use of the full available seat stroke for both the 
initial mine blast event as well as the subsequent slam-down. 
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In addition to the maximum applied acceleration, the DRI depends on the change in acceleration 
with time.  In the case of an undamped harmonic oscillator, a step change in acceleration will 
produce an overshoot of twice the average value.  As damping increases, the ratio decreases, 
becoming equal to unity at critical damping.  Figure 3 illustrates this reduction in overshoot with 
increasing damping ratio.  The damping ratio for the human spine is 0.224, which leads to a 
maximum spinal compression nearly 50% higher than the steady-state value, as shown in the 
figure.   
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Figure 3.  Maximum dynamic compression due to a step acceleration change. 
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The overshoot can be reduced by ramping up to the maximum acceleration more gradually as in 
figure 4.  Unfortunately, the time required to produce a significant reduction, on the order of 
100 ms, results in excessive seat displacement for typical vehicle configurations.   
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Figure 4.  Maximum dynamic compression due to a linear change in acceleration followed 

by constant acceleration. 
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Figure 5 shows the time dependent spinal response due to various ramp rates. 
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Figure 5.  Dynamic overshoot with different acceleration ramp rates. 
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6. Design Curves 

The vehicle internal layout limits the available seat stroke.  An optimal acceleration profile 
should minimize acceleration or DRI to match vehicle velocity with a constant seat stroke 
constraint.  Due to the overshoot effect described above, minimum acceleration and minimum 
DRI may not be achieved with the same acceleration profile. 

Consider an isolated seat that can be modeled as a damped harmonic oscillator.  Adjustments to 
the damping coefficient and spring constant will enable both velocity and seat stroke to be 
matched.  As an example, suppose this is desired for a velocity of 6.26 meters per second (m/s), 
an allowable seat stroke of 10.3 cm, and a sprung mass of 120 kg.  The velocity corresponds to a 
drop from a height of 2 m.  The set of all possible solutions to this example is represented by the 
curve plotted in figure 6, with resultant maximum acceleration and DRI given in figure 7.  The 
acceleration and DRI are minimized with different oscillator parameters.  The acceleration and 
displacement profiles for these two cases are shown in figure 8.  The minimum acceleration 
occurs with an underdamped oscillator, a potentially undesirable response due to the resultant 
negative G loading.  It is important that the natural frequency of the oscillator remains below the 
natural frequency of the spine to avoid resonance.  In figure 7, DRI rises sharply at higher 
oscillator frequencies due to this effect. 
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Figure 6.  Damped harmonic oscillator parameters giving constant displacement of 10.6 cm 

with an initial velocity of 6.26 m/s. 
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Figure 7.  Maximum acceleration and DRI at selected oscillator parameters lying along the 

constant displacement curve shown in figure 6. 
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Figure 8.  Acceleration profiles for minimum acceleration and minimum DRI. 
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7. Conclusions 

Shock isolation should be matched to the vehicle mass and protection level provided by the 
armor to ensure occupant survivability.  Minimum acceleration and minimum DRI, for a given 
velocity change and allowable seat stroke, are not achieved with the same acceleration profile; 
therefore, any shock isolation system will be a compromise.  Care must be taken in an 
underdamped system because seat restraints and overhead clearance become critical.  
Overdamped or critically damped systems have lower DRI, but a much higher G loading for the 
same seat stroke.  Square pulse acceleration provides minimum G loading, but not minimum 
DRI, and does not provide a restoring force for the slam-down phase.  The short time scales of 
mine blast events result in DRI overshoot.  The dynamic overshoot in spinal compression, 
δmax/δsteady state, depends on the time scale of the loading function, but is independent of 
amplitude.  The DRI limits recommended in the literature are more restrictive than the 
recommended acceleration limits.  Adequate space for seat displacement is particularly important 
for lightweight vehicles. 
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